
Case Study 1: 

 

 

Computation Complexity  
 
From the Introduction:  
 
The need to be able to measure the complexity of a problem, algorithm or structure, and to obtain 
bounds and quantitive relations for complexity arises in more and more sciences: besides computer 
science, the traditional branches of mathematics, statistical physics, biology, medicine, social sciences 
and engineering are also confronted more and more frequently with this problem. In the approach taken 
by computer science, complexity is measured by the quantity of computational resources (time, storage, 
program, communication). These notes deal with the foundations of this theory.  
 
Computation theory can basically be divided into three parts of different character. First, the exact 
notions of algorithm, time, storage capacity, etc. must be introduced. For this, different mathematical 
machine models must be defined, and the time and storage needs of the computations performed on 
these need to be clarified (this is generally measured as a function of the size of input). By limiting the 
available resources, the range of solvable problems gets narrower; this is how we arrive at different 
complexity classes. The most fundamental complexity classes provide important classification even for 
the problems arising in classical areas of mathematics; this classification reflects well the practical and 
theoretical difficulty of problems. The relation of different machine models to each other also belongs to 
this first part of computation theory.  
 
Second, one must determine the resource need of the most important algorithms in various areas of 
mathematics, and give efficient algorithms to prove that certain important problems belong to certain 
complexity classes. In these notes, we do not strive for completeness in the investigation of concrete 
algorithms and problems; this is the task of the corresponding fields of mathematics (combinatorics, 
operations research, numerical analysis, number theory).  
 
Third, one must find methods to prove "negative results", i.e. for the proof that some problems are 
actually unsolvable under certain resource restrictions. Often, these questions can be formulated by 
asking whether some introduced complexity classes are different or empty. This problem area includes 
the question whether a problem is algorithmically solvable at all; this question can today be considered 
classical, and there are many important results related to it. The majority of algorithmic problems 
occurring in practice is, however, such that algorithmic solvability itself is not in question, the question is 
only what resources must be used for the solution. Such investigations, addressed to lower bounds, are 
very difficult and are still in their infancy. In these notes, we can only give a taste of this sort of result.  
 
It is, finally, worth remarking that if a problem turns out to have only "difficult" solutions, this is not 
necessarily a negative result. More and more areas (random number generation, communication 
protocols, secret communication, data protection) need problems and structures that are guaranteed to 
be complex. These are important areas for the application of complexity theory; from among them, we will 
deal with cryptography, the theory of secret communication.  

 



CASE STUDY 2: 

 

Complexity Theory: A Modern Approach  
 
 
 
 
Computational complexity theory has developed rapidly in the past three decades. The list of surprising 
and fundamental results proved since 1990 alone could fill a book: these include new probabilistic 
definitions of classical complexity classes (IP = PSPACE and the PCP Theorems) and their implications 
for the field of approximation algorithms; Shor's algorithm to factor integers using a quantum computer; an 
understanding of why current approaches to the famous P versus NP will not be successful; a theory of 
derandomization and pseudorandomness based upon computational hardness; and beautiful 
constructions of pseudorandom objects such as extractors and expanders.  
 
This book aims to describe such recent achievements of complexity theory in the context of the classical 
results. It is intended to be a text and as well as a reference for self-study. This means it must 
simultaneously cater to many audiences, and it is carefully designed with that goal. The book will explain 
the context in which a certain notion is useful, and why things are defined in a certain way. Examples and 
solved exercises accompany key definitions.  
 
The book has three parts and an appendix. Part I covers basic complexity classes; it provides a broad 
introduction to the field and covers basically the same ground as Papadimitriou's text from the early 
1990s -- but more quickly. Part II covers lowerbounds for concrete computational models; it concerns 
lowerbounds on resources required to solve algorithmic tasks on concrete models such as circuits, 
decision trees, etc. Part III covers advanced topics; this constitutes the latter half of the book and is 
largely devoted to developments since the late 1980s. It includes average case complexity, 
derandomization and pseudorandomness, the PCP theorem and hardness of approximation, proof 
complexity and quantum computing. Finally, the Appendix outlines mathematical ideas that may be 
useful for following certain chapters, especially in parts II and III.  
 
Intended Audience:  
 
This book assumes essentially no computational background (though a slight exposure to computing may 
help) and very little mathematical background apart from the ability to understand proofs and some 
elementary probability on finite sample spaces. A typical undergraduate course on "Discrete Math" taught 
in many math and CS departments should suffice (together with the Appendix).  


